ElectroDynamic Systems Software ScientificTM

Antenna array

Complex directional antenna consists of separate near-omnidirectional antennas (radiating elements) positioned in the space and driven by high-frequency …

(from 'Glossary' of our web–site)

## Articles for 2004

 Search:

Thursday, May 13, 2004 at 12:05AM

Solving of the applied problems of propagation of electromagnetic waves is often connected with the search of analytic solutions to the boundary value problems of mathematical physics. From this viewpoint, the use of variable division method is one of possible ways of this search. The well-studied classic Fourier method allows division of variables in partial differential equations as applied to the boundary conditions of the simplest kind. The triangular border of the directing structure studied in this article cannot be handled by the variable division method in its classical form. In this article, the use of the generalized Fourier method of variable division has been examined as one of ways to extend the range of the applied electrodynamics problems, witch can be solved analytically. As an example, the advantage of this method over the classic method of variable division has been demonstrated for determining Е-wave family in triangular cross section waveguide while solving the internal boundary value problems with two–dimensional Helmholtz equation.

Monday, March 22, 2004 at 12:03AM

Solving of applied problems concerning different physical processes often involves search for analytic solutions to the boundary value problems of mathematical physics. From this viewpoint, the use of the variable separation method is one of possible ways of this search. The well-studied classical Fourier method allows obtaining analytic solutions to partial differential equations satisfying a limited number of kinds of boundary conditions. The internal boundary value problems for a rectangular domain, which cannot be solved by variable separation method in its classical form, are examined in this paper. Application of the generalized Fourier method of variable separation is proposed as one of means to expand the sphere of the problems of mathematical physics, which can be solved analytically. The advantage of this method, in comparison with the classic variable separation, is demonstrated for internal hybrid boundary value problems with Laplace and Helmholtz equations in flat rectangular domain.

RefereesHelp Race 1.5.7

RefereesHelp Race™ is a professional solution for keeping record at running, swimming and skiing competitions.

Subscribe

Modify subscription

Home | Products | Publications | Support | Information | Partners