ГлавнаяКарта сайтаНапишите намПоиск по сайту
EDS-Soft
ElectroDynamic Systems Software ScientificTM
Radiolocation Systems ResearchTM



Antenna Array


Дифракция

Явление отклонения распространения волны от законов геометрической оптики.

(из «Словаря терминов» нашего сайта)






Виктор Иванович Чулков, ведущий научный сотрудник Калужского НИИ.
Является автором и руководителем проекта “EDS–Soft” (с 2002 года).
1/ 2/ все страницы

Математическое моделирование многослойных поляризаторов на меандровых линиях



Опубликовано: 29.10.2003
Оригинал: Радиотехника (Москва), 1994, №9, с.71...75
© В. И. Чулков, 1994. Все права защищены.
© EDS–Soft, 2003. Все права защищены.


Для решения (2) используем метод Галеркина. В качестве модели МЛ выберем показанную на рис.2,а конфигурацию пересечения проводников, предложенную в [1], считая при этом, что и длины периодов и МЛ ( — длина волны в диэлектрике, в котором расположена МЛ), и пренебрегая поперечными токами. Зависимость продольных токов от поперечных координат выберем таким образом, чтобы обеспечивалась требуемая особенность на ребрах в соответствии с условиями Мейкснера [2]. Рассмотрим характерный элемент МЛ (рис.2,б), ориентированный под углом к оси МЛ. В соответствии со сделанными замечаниями ток на нем в локальной системе координат , где , а определяется видом выбранного базиса вдоль оси и является разложением в ряд по этому базису с неизвестными коэффициентами.

После нахождения тока на МЛ можно рассчитать элементы матрицы рассеяния () поляризатора. Для определенности будем считать, что i,j = 1,3 соответствуют плоской волне, поляризованной под углом к оси МЛ, а i,j = 2,4 — плоской волне, поляризованной под углом . Причем индексы j, равные 1 и 2, связаны с волной, падающей в положительном направлении оси OZ, а индексы j, равные 3 и 4, — в отрицательном. Тогда, например, элемент представляет собой коэффициент преобразования волны, поляризованной под углом и падающей вдоль отрицательного направления, в волну, прошедшую через ММП и поляризованную под углом : . Коэффициент прохождения волны, поляризованной под углом : , где , — компоненты электрического поля прошедшей через ММП волны в сферической системе координат.

На основании полученных формул была составлена программа для расчетов на ПЭВМ, причем в качестве базисных функций была взята полная ортогональная система

где , , , , (см. рис.2,а), а и определяют направление, с которого приходит плоская волна (3).

Рис.2

Функция введена для устранения скачков фазы в местах соединения проводников МЛ

.

В качестве проверки работоспособности алгоритма и программы были проведены расчеты для одного слоя ММП из [1]. Полученные результаты для дифференциального сдвига фаз между коэффициентами и совпали с приведенными в [1] с графической точностью.

Результаты расчета для ММП из четырех слоев, разделенных между собой воздушной прослойкой =1 толщиной 0,1667, с параметрами: =0,0067, =5,4 (i=1… 4); =0,09067; =0,32; ==0,0107; = 0,056; = 0,099 ( — длина волны на начальной частоте ) в полосе частот при , приведены на рис. 3 (непрерывная и штриховая кривые). Там же показаны результаты экспериментальных исследований на макете, в котором вместо воздушной прослойки использовался пенопласт. Отличие не превышает 8…10% и вызвано неадекватностью экспериментального образца и математической модели, особенно ощутимой при большом числе слоев ММП. Эта неадекватность заключается, прежде всего, в конечных размерах реального ММП и в использовании вместо воздушной прослойки пенопласта с >1 (=1,05…1,15).

Рис.3

При расстояниях между слоями МЛ менее (0,18…0,2) необходимо учитывать взаимодействие по высшим пространственным гармоникам. Применение ММП позволяет, по сравнению с однослойной МЛ, существенно расширить рабочий диапазон длин волн (до октавы и более).

Автор благодарен Л. И. Сидоренко за предоставленные результаты экспериментальных исследований и В. В. Корышеву за обсуждение полученных теоретических результатов и внимание к работе.


1/ 2/ все страницы

Использованная литература

1. Terret G., Levler J.R., Mahdjoubi K.— lEEETrans., 1984, v.AP–32, № 9.
2. Миттра Р., Ли С. Аналитические методы теории волноводов: Пер. с англ.// Под ред. Г.В. Воскресенского.— М.: Мир, 1974.
3. Вайнштейн Л.А. Электромагнитные волны.— М.: Радио и связь, 1988.
4. Амитей Н., Галиндо В., By Ч. Теория и анализ фазированных антенных решеток.— М.: Мир, 1974.
5. Филиппов B.C. Математическая модель и результаты исследования характеристик печатных излучателей в плоских ФАР//Антенны, вып.32.— М.: Радио и связь, 1985.

Статьи за 2003 год

Все статьи

GuidesArray Circular 0.1.4

GuidesArray Circular™ осуществляет электродинамическое моделирование плоских фазированных антенных решеток круглых волноводов с помощью метода моментов.


Подписка



Изменение параметров подписки


 




 
 
EDS-Soft

© 2002-2024 | EDS-Soft
Контакты | Правовая информация | Поиск | Карта сайта

© дизайн сайта | Андрей Азаров