ГлавнаяКарта сайтаНапишите намПоиск по сайту
EDS-Soft
ElectroDynamic Systems Software ScientificTM
Radiolocation Systems ResearchTM



Antenna Array


Длина волны

Наименьшее расстояние между двумя точками, расположенными вдоль направления распространения волны, в которых колебания имеют одинаковую фазу.

(из «Словаря терминов» нашего сайта)






Виктор Иванович Чулков, ведущий научный сотрудник Калужского НИИ.
Является автором и руководителем проекта “EDS–Soft” (с 2002 года).
1/ 2/ 3все страницы

Исследование импедансных свойств приемной решетки прямоугольных волноводов



Опубликовано: 14.12.2006
© В. И. Чулков, 1990. Все права защищены.
© EDS–Soft, 2006. Все права защищены.


Ниже приводятся результаты численных расчетов на ПЭВМ с использованием программы "ArrayGuides Rectangular".

Рассмотрим случай, когда период АР состоит из одного волновода, широкая стенка которого имеет размер a и ориентирована вдоль оси OX, узкая стенка — размер b, а плоская электромагнитная волна поляризована вдоль оси OY. На рис.2 дано семейство кривых, которое отражает изменение в полосе частот импедансных свойств поверхности, расположенной на расстоянии 0.08 ( — длина волны, соответствующая нижней частоте диапазона) от апертуры решетки, в точке x = y = 0. Диэлектрики отсутствуют, волна падает нормально к поверхности АР, волноводы размещены в узлах прямоугольной сетки.

Рис.2 Поведение мнимой части поверхностного импеданса над решеткой закритических прямоугольных волноводов от частоты (a: кривая 1 - = 0.21, кривая 2 — = 0.22, кривая 3 — =0.23; b: кривая 1 — = 0.18, кривая 2 — = 0.19, кривая 3 — = 0.2; c: кривая 1 — a = 0.2, кривая 2 — a = 0.19, кривая 3 — a = 0.18; d: кривая 1 — b = 0.17, кривая 2 — b = 0.16, кривая 3 — b = 0.15; e: кривая 1 — = 0.08, кривая 2 — = 0.07, кривая 3 — = 0.06).

Приведенные кривые показывают, как влияют различные параметры структуры: периоды решетки (рис.2а) и (рис.2б), размеры широкой (рис. 2в) и узкой (рис.2г) стенок волновода и расстояние анализируемой поверхности от апертуры решетки (рис.2д) на величину мнимой части Z. Геометрия решетки: = 0.21, = 0.18, волновода: a = 0.2, b = 0.17. Поскольку волновод является закритическим во всем частотном диапазоне, действительная часть Z равна нулю. Погрешность вычислений, установленная по внутренней сходимости численной процедуры, не превышает 1…3% при использовании для описания поля в раскрыве прямоугольного волновода базисных функций, соответствующих волнам , , , . (В дальнейшем, при описании результатов численного эксперимента, указываются те собственные волны прямоугольного волновода, учет которых обеспечивал указанную точность). Из анализа кривых рис. 2 можно сделать следующие выводы:

1) наиболее существенно на величину импеданса влияют изменение широкой стенки волновода и расстояния поверхности от апертуры АР;

2) изменение импеданса в сторону его увеличения в нижней части диапазона неизбежно приводит во всех случаях к смещению в сторону нижних частот области резонанса и, тем самым, к снижению полезной полосы частот, в которой .

Пунктиром на рисунках показан импеданс, определяемый по формуле:

при a = 0.2, b = 0.17, = 0.08. Приведенная формула соответствует нулевому приближению, в ней обозначено: , — проводимость волны прямоугольного волновода.

Было исследовано также влияние бесконечно тонкой диафрагмы, устанавливаемой в раскрыве запредельного волновода. Установлено, что использование диафрагмы тоже не позволяет получить требуемого поверхностного импеданса Z в широкой полосе частот.

Рис.3 Зависимость поверхностного импеданса (a, 1 — модуль, 2 — действительная часть, 3 — мнимая часть) и входного сопротивления ЛИ (b, 1 — действительная часть, 2 — мнимая часть) от частоты . ЛИ расположен на поверхности с импедансом (a).

На рис.3а приведены кривые зависимости Z над АР докритических волноводов от частоты в точке x = y = 0. Геометрия решетки — = = 0.2, прямоугольная сетка. Размеры волновода — a = b = 0.19, диэлектрическое заполнение = 7.2 (что соответствует частоте среза волн и ~0.98). Исследуемая поверхность расположена на расстоянии = 0.125. Плоская волна падает нормально к поверхности АР. В волноводе учитывались волны , , , , , , , .


1/ 2/ 3все страницы

Использованная литература

1. Чулков В.И. Использование ленточных излучателей в антенных решетках.— Радиотехника и электроника, 1992, № 5, с.834…840.
2. Амитей Н., Галиндо В., Ву Ч. Теория и анализ фазированных антенных решеток.—– М.: Мир, 1974.— 345 c.
3. Марков Г.Т., Чаплин А.Ф. Возбуждение электромагнитных волн.— M.: Радио и связь, 1983.— 295 c.
4. Полак Э. Численные методы оптимизации.— М.: Мир, 1974.

Статьи за 2006 год

Все статьи

GuidesArray Circular 0.1.4

GuidesArray Circular™ осуществляет электродинамическое моделирование плоских фазированных антенных решеток круглых волноводов с помощью метода моментов.


Подписка



Изменение параметров подписки


 




 
 
EDS-Soft

© 2002-2024 | EDS-Soft
Контакты | Правовая информация | Поиск | Карта сайта

© дизайн сайта | Андрей Азаров